

Highly sensitive volatile compound fingerprinting of innovative food-related products with ion mobility spectrometry

Chadin Kulsing

Faculty of science, Department of Chemistry (ckulsing@gmail.com)

Metabolomics for Life Sciences Research Unit Chulalongkorn University

Complexity of food samples & approaches in Gas Chromatography

Y. Nolvachai, C. Kulsing, P.J. Marriott, Trends in Analytical Chemistry, 96 (2017) 124-137

Approaches for volatile fingerprinting analysis

Gas chromatography ion-mobility spectrometry (GC-IMS)

- Ion-Mobility Spectrometry
- Direct headspace/liquid injection
- Peak identification based on standard injection
- Ultrahigh sensitivity
- Highly volatile compound separation

4

- Mass Spectrometry
- Sample preparation and injection
- Peak identification based on library match
- Limited sensitivity
- Highly volatile compound coelution

Gas chromatography ion-mobility spectrometry (GC-IMS)

Injector \rightarrow Column \rightarrow Detector (IMS) \rightarrow Ionization \rightarrow IMS Drift Tube \rightarrow Faraday plate

Data alignment

	Sample											
	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S1	S1
Peak 1	Peak	Peak	Peak									
	area	area	area									
Peak 2	Peak	Peak	Peak									
	area	area	area									
Peak 3	Peak	Peak	Peak									
	area	area	area									
Peak 4	Peak	Peak	Peak									
	area	area	area									
Peak 5	Peak	Peak	Peak									
	area	area	area									
Peak 6	Peak	Peak	Peak									
	area	area	area									
Peak 7	Peak	Peak	Peak									
	area	area	area									
Peak 8	Peak	Peak	Peak									
	area	area	area									
Peak 9	Peak	Peak	Peak									
	area	area	area									

Principal component analysis (PCA)

	Sample											
	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S1	S1
Peak 1	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak
	area	area	area	area	area	area	area	area	area	area	area	area
Peak 2	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak
	area	area	area	area	area	area	area	area	area	area	area	area
	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak
	area	area	area	area	area	area	area	area	area	area	area	area
	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak
	area	area	area	area	area	area	area	area	area	area	area	area
Peak 5	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak
	area	area	area	area	area	area	area	area	area	area	area	area
Peak 6	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak
	area	area	area	area	area	area	area	area	area	area	area	area
	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak
	area	area	area	area	area	area	area	area	area	area	area	area
	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak
	area	area	area	area	area	area	area	area	area	area	area	area
	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak	Peak
	area	area	area	area	area	area	area	area	area	area	area	area
-Peak 9	Peak 3	P	еак 8	Pe	ak 7	Реак	4		► PC:	1		

Principal component analysis (PCA)

DC2	Sample												
	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S1	S1	
Τ	Peak												
	area												
eak L	Peak												
	area												
č	Peak												
	area												
	Peak												
	area												
1	Peak												
	area												
ak 6	Peak												
	area												
Pe	Peak												
	area												
ц Т Т	Peak area												
f	Peak												
	area												

Principal component analysis (PCA)

GC-IMS analysis of volatile organic

compounds in

cannabis samples

Untargeted analysis with SPME GC-MS

Untargeted analysis with SPME GC-MS

GC-IMS analysis of cannabis extracts obtained from different sources

drift time [ms}

GC-IMS analysis of cannabis extracts obtained from different sources

GC-IMS report Cannabis samples ₽ 5000-**Rice bran** Crude-No.1 PC_3(16%) 2500-Sacha 0-Ъ **Sesame** Crude-No.2 -2500-Perilla Coconut -2500 0 PC_1(35%) -5000 2500 5000

Innovative wine maturation approach

Fig. 1. Configuration of the pilot plant scale electric field set up for wine aging.

Innovative Food Science and Emerging Technologies 9 (2008) 463–468.

Innovative wine maturation approach

Table 2

Sensory evaluation of AC electric field treated wines with different treatments contrast to the untreated one

Samples	Electric field (v/cm)	Treat time (min)	Sensory evaluation (Scores)					Total scores (total 100)	Comments			
			Clarity (total 10	Color D)(total 10)	Aroma (total 30)	Taste (total 40)	Typicality (total 10)	· ,				
0	0	0	8.0	7.5	20.0	28.0	7.0	70.5	Clear, ruby red color, pungent alcohol scent with intense fruit aroma, full-bodied while astringent, unbalanced harsh taste			
1-1	300	1	8.0	7.5	20.5	30.0	7.0	73.0	Astringency decreased slightly, others unchanged			
1-2	300	3	8.0	7.5	22.0	32.5	7.0	77.0	Smell and taste trended to soft and harmony, others unchanged			
1-3	300	8	8.0	7.5	22.5	33.5	7.5	79.0	Aged wine scent appeared, the balance of taste improved			
2-1	600	1	8.0	7.5	22.0	33.5	7.5	78.5	Slight aged wine aroma, complexity improved and balanced			
2-2	600	3	8.0	8.0	25.5	35.0	8.5	85.0	Pleasing fruit and aged wine fragrance, full-bodied while well-balanced and harmonious taste with perfect typicality			
2-3	600	8	8.0	8.0	23.5	34.5	8.0	82.0	New unpleasant scent and coarse taste emerged			
3-1	900	1	8.0	7.5	22.0	34.0	7.5	79.0	Fresh fruit smell faded while aged wine scent emerged. Softer mouthfee while unbalanced taste acquired.			
3-2	900	3	8.0	8.0	19.5	31.5	6.5	73.5	Faint new unpleasant scent blended with aged wine aroma, complexity improved while unbalanced			
3-3	900	8	8.0	8.0	17.5	28.5	6.5	68.5	Burning, disharmonious mouthfeel with unpleasant scent, unacceptabl change			

Innovative Food Science and Emerging Technologies 9 (2008) 463–468.

drift time / ms

Silverlake Shiraz 2014 Fat Bastard Syrah 2016 Silverlake Chenin Black 2015 Knight Black Horse 2015 (Lychee Sweet) Knight Black Horse 2014 (Mangosteen)

GC-IMS for analysis of volatile organic compounds in alcohol samples

PCA

Before Destilation Before Fermented Pure95% Union

GC-IMS analysis of volatile organic compounds in DUCK samples 1

1aC

AN GIN

R

GC-IMS application Duck **Boiled Duck Boiled Duck 30%** Duck **Duck 30%** TIRZ TIR 25.1 25.26 Measurement run (s) Measurement run (s) 350 -250 -150 -占

C×GC-MS nalysis of coffee

GC-IMS analysis of Coffee

38

t_R (min)

25

50

63

t_R (s)

0

GC-IMS analysis of Coffee PCA

- Coffee1+3(5:95) Coffee 4 1000.0 Coffee1+3(50:50) Coffee 3 Apea 80 0.0 Área 11 Coffee 2 -1000.0 Coffee1+3(95:5) Coffee 1 -3000.0 0.0 1000.0 2000.0 3000.0 -2000.0 -1000.0 4000.0

Principal Components

PC_2[12%]

PC_1 [72%]

<u>Acknowledgement</u>

Dr Nuttanee Tungkijanansin

